Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.496
Filter
1.
Nat Commun ; 15(1): 3836, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714691

ABSTRACT

Exercise has beneficial effects on cognition throughout the lifespan. Here, we demonstrate that specific exercise patterns transform insufficient, subthreshold training into long-term memory in mice. Our findings reveal a potential molecular memory window such that subthreshold training within this window enables long-term memory formation. We performed RNA-seq on dorsal hippocampus and identify genes whose expression correlate with conditions in which exercise enables long-term memory formation. Among these genes we found Acvr1c, a member of the TGF ß family. We find that exercise, in any amount, alleviates epigenetic repression at the Acvr1c promoter during consolidation. Additionally, we find that ACVR1C can bidirectionally regulate synaptic plasticity and long-term memory in mice. Furthermore, Acvr1c expression is impaired in the aging human and mouse brain, as well as in the 5xFAD mouse model, and over-expression of Acvr1c enables learning and facilitates plasticity in mice. These data suggest that promoting ACVR1C may protect against cognitive impairment.


Subject(s)
Activin Receptors, Type I , Epigenesis, Genetic , Hippocampus , Memory, Long-Term , Physical Conditioning, Animal , Animals , Memory, Long-Term/physiology , Mice , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism , Humans , Physical Conditioning, Animal/physiology , Hippocampus/metabolism , Male , Neuronal Plasticity/genetics , Mice, Inbred C57BL , Promoter Regions, Genetic , Female , Aging/genetics , Aging/physiology
2.
Methods Mol Biol ; 2799: 107-138, 2024.
Article in English | MEDLINE | ID: mdl-38727905

ABSTRACT

NMDAR-dependent forms of synaptic plasticity in brain regions like the hippocampus are widely believed to provide the neural substrate for long-term associative memory formation. However, the experimental data are equivocal at best and may suggest a more nuanced role for NMDARs and synaptic plasticity in memory. Much of the experimental data available comes from studies in genetically modified mice in which NMDAR subunits have been deleted or mutated in order to disrupt NMDAR function. Behavioral assessment of long-term memory in these mice has involved tests like the Morris watermaze and the radial arm maze. Here we describe these behavioral tests and some of the different testing protocols that can be used to assess memory performance. We discuss the importance of distinguishing selective effects on learning and memory processes from nonspecific effects on sensorimotor or motivational aspects of performance.


Subject(s)
Maze Learning , Memory, Long-Term , Receptors, N-Methyl-D-Aspartate , Spatial Memory , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Mice , Memory, Long-Term/physiology , Maze Learning/physiology , Spatial Memory/physiology , Hippocampus/physiology , Hippocampus/metabolism , Behavior, Animal/physiology , Neuronal Plasticity/physiology
3.
Neuropharmacology ; 252: 109960, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38631563

ABSTRACT

Small conductance Ca2+-activated K+ (SK) channels, expressed throughout the CNS, are comprised of SK1, SK2 and SK3 subunits, assembled as homotetrameric or heterotetrameric proteins. SK channels expressed somatically modulate the excitability of neurons by mediating the medium component of the afterhyperpolarization. Synaptic SK channels shape excitatory postsynaptic potentials and synaptic plasticity. Such SK-mediated effects on neuronal excitability and activity-dependent synaptic strength likely underlie the modulatory influence of SK channels on memory encoding. Converging evidence indicates that several forms of long-term memory are facilitated by administration of the SK channel blocker, apamin, and impaired by administration of the pan-SK channel activator, 1-EBIO, or by overexpression of the SK2 subunit. The selective knockdown of dendritic SK2 subunits facilitates memory to a similar extent as that observed after systemic apamin. SK1 subunits co-assemble with SK2; yet the functional significance of SK1 has not been clearly defined. Here, we examined the effects of GW542573X, a drug that activates SK1 containing SK channels, as well as SK2/3, on several forms of long-term memory in male C57BL/6J mice. Our results indicate that pre-training, but not post-training, systemic GW542573X impaired object memory and fear memory in mice tested 24 h after training. Pre-training direct bilateral infusion of GW542573X into the CA1 of hippocampus impaired object memory encoding. These data suggest that systemic GW542573X impairs long-term memory. These results add to growing evidence that SK2 subunit-, and SK1 subunit-, containing SK channels can regulate behaviorally triggered synaptic plasticity necessary for encoding hippocampal-dependent memory.


Subject(s)
Hippocampus , Mice, Inbred C57BL , Pyrazoles , Small-Conductance Calcium-Activated Potassium Channels , Animals , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Male , Mice , Thiazoles/pharmacology , Indoles/pharmacology , Pyrimidines/pharmacology , Memory/drug effects , Memory/physiology , Fear/drug effects , Fear/physiology , Memory, Long-Term/drug effects , Memory, Long-Term/physiology
4.
Curr Biol ; 34(9): 1904-1917.e6, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38642548

ABSTRACT

Neurons have differential and fluctuating energy needs across distinct cellular compartments, shaped by brain electrochemical activity associated with cognition. In vitro studies show that mitochondria transport from soma to axons is key to maintaining neuronal energy homeostasis. Nevertheless, whether the spatial distribution of neuronal mitochondria is dynamically adjusted in vivo in an experience-dependent manner remains unknown. In Drosophila, associative long-term memory (LTM) formation is initiated by an early and persistent upregulation of mitochondrial pyruvate flux in the axonal compartment of neurons in the mushroom body (MB). Through behavior experiments, super-resolution analysis of mitochondria morphology in the neuronal soma and in vivo mitochondrial fluorescence recovery after photobleaching (FRAP) measurements in the axons, we show that LTM induction, contrary to shorter-lived memories, is sustained by the departure of some mitochondria from MB neuronal soma and increased mitochondrial dynamics in the axonal compartment. Accordingly, impairing mitochondrial dynamics abolished the increased pyruvate consumption, specifically after spaced training and in the MB axonal compartment, thereby preventing LTM formation. Our results thus promote reorganization of the mitochondrial network in neurons as an integral step in elaborating high-order cognitive processes.


Subject(s)
Axons , Drosophila Proteins , Drosophila melanogaster , Memory, Long-Term , Mitochondria , Mitochondrial Dynamics , Mushroom Bodies , Animals , Memory, Long-Term/physiology , Mitochondrial Dynamics/physiology , Axons/metabolism , Axons/physiology , Mushroom Bodies/physiology , Mushroom Bodies/metabolism , Drosophila melanogaster/physiology , Mitochondria/metabolism , Mitochondria/physiology , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Neurons/metabolism , Neurons/physiology
5.
Elife ; 122024 Apr 24.
Article in English | MEDLINE | ID: mdl-38655926

ABSTRACT

The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.


Deciding what and how much to eat is a complex biological process which involves balancing many types of information such as the levels of internal energy storage, the amount of food previously available in the environment, the perceived value of certain food items, and how these are remembered. At the molecular level, food contains carbohydrates that are broken down to produce glucose, which is then delivered to cells under the control of a hormone called insulin. There, glucose molecules are either immediately used or stored as glycogen until needed. Insulin signalling is also known to interact with the brain's decision-making systems that control eating behaviors; however, how our brains balance food intake with energy storage is poorly understood. Berger et al. set out to investigate this question using fruit flies as an experimental model. These insects also produce insulin-like molecules which help to relay information about glycogen levels to the brain's decision-making system. In particular, these signals reach a population of neurons that produce a messenger known as octopamine similar to the human noradrenaline, which helps regulate how much the flies find consuming certain types of foods rewarding. Berger et al. were able to investigate the role of octopamine in helping to integrate information about internal and external resource levels, memory formation and the evaluation of different food types. When the insects were fed normally, increased glycogen levels led to foods rich in carbohydrates being rated as less rewarding by the decision-making cells, and therefore being consumed less. Memories related to food intake were also short-lived ­ in other words, long-term 'food memory' was suppressed, re-setting the whole system after every meal. In contrast, long periods of starvation in insects with high carbohydrates resources produced a stable, long-term memory of food and hunger which persisted even after the flies had fed again. This experience also changed their food rating system, with highly nutritious foods no longer being perceived as sufficiently rewarding. As a result, the flies overate. This study sheds new light on the mechanisms our bodies may use to maintain energy reserves when food is limited. The persistence of 'food memory' after long periods of starvation may also explain why losing weight is difficult, especially during restrictive diets. In the future, Berger et al. hope that this knowledge will contribute to better strategies for weight management.


Subject(s)
Drosophila melanogaster , Energy Metabolism , Octopamine , Animals , Drosophila melanogaster/physiology , Octopamine/metabolism , Memory/physiology , Glycogen/metabolism , Starvation , Sucrose/metabolism , Memory, Long-Term/physiology , Eating/physiology
6.
Elife ; 122024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661727

ABSTRACT

We are unresponsive during slow-wave sleep but continue monitoring external events for survival. Our brain wakens us when danger is imminent. If events are non-threatening, our brain might store them for later consideration to improve decision-making. To test this hypothesis, we examined whether novel vocabulary consisting of simultaneously played pseudowords and translation words are encoded/stored during sleep, and which neural-electrical events facilitate encoding/storage. An algorithm for brain-state-dependent stimulation selectively targeted word pairs to slow-wave peaks or troughs. Retrieval tests were given 12 and 36 hr later. These tests required decisions regarding the semantic category of previously sleep-played pseudowords. The sleep-played vocabulary influenced awake decision-making 36 hr later, if targeted to troughs. The words' linguistic processing raised neural complexity. The words' semantic-associative encoding was supported by increased theta power during the ensuing peak. Fast-spindle power ramped up during a second peak likely aiding consolidation. Hence, new vocabulary played during slow-wave sleep was stored and influenced decision-making days later.


Subject(s)
Memory, Long-Term , Sleep, Slow-Wave , Humans , Sleep, Slow-Wave/physiology , Male , Female , Memory, Long-Term/physiology , Adult , Young Adult , Brain/physiology , Decision Making/physiology , Vocabulary , Electroencephalography
7.
PLoS Biol ; 22(4): e3002585, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38648719

ABSTRACT

Orb2 the Drosophila homolog of cytoplasmic polyadenylation element binding (CPEB) protein forms prion-like oligomers. These oligomers consist of Orb2A and Orb2B isoforms and their formation is dependent on the oligomerization of the Orb2A isoform. Drosophila with a mutation diminishing Orb2A's prion-like oligomerization forms long-term memory but fails to maintain it over time. Since this prion-like oligomerization of Orb2A plays a crucial role in the maintenance of memory, here, we aim to find what regulates this oligomerization. In an immunoprecipitation-based screen, we identify interactors of Orb2A in the Hsp40 and Hsp70 families of proteins. Among these, we find an Hsp40 family protein Mrj as a regulator of the conversion of Orb2A to its prion-like form. Mrj interacts with Hsp70 proteins and acts as a chaperone by interfering with the aggregation of pathogenic Huntingtin. Unlike its mammalian homolog, we find Drosophila Mrj is neither an essential gene nor causes any gross neurodevelopmental defect. We observe a loss of Mrj results in a reduction in Orb2 oligomers. Further, Mrj knockout exhibits a deficit in long-term memory and our observations suggest Mrj is needed in mushroom body neurons for the regulation of long-term memory. Our work implicates a chaperone Mrj in mechanisms of memory regulation through controlling the oligomerization of Orb2A and its association with the translating ribosomes.


Subject(s)
Drosophila Proteins , HSP40 Heat-Shock Proteins , Memory, Long-Term , Animals , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Memory, Long-Term/physiology , mRNA Cleavage and Polyadenylation Factors/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , Mushroom Bodies/metabolism , Protein Multimerization , Transcription Factors/metabolism , Transcription Factors/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
8.
J Neurosci ; 44(19)2024 May 08.
Article in English | MEDLINE | ID: mdl-38575342

ABSTRACT

The histone lysine demethylase KDM5B is implicated in recessive intellectual disability disorders, and heterozygous, protein-truncating variants in KDM5B are associated with reduced cognitive function in the population. The KDM5 family of lysine demethylases has developmental and homeostatic functions in the brain, some of which appear to be independent of lysine demethylase activity. To determine the functions of KDM5B in hippocampus-dependent learning and memory, we first studied male and female mice homozygous for a Kdm5b Δ ARID allele that lacks demethylase activity. Kdm5b Δ ARID/ Δ ARID mice exhibited hyperactivity and long-term memory deficits in hippocampus-dependent learning tasks. The expression of immediate early, activity-dependent genes was downregulated in these mice and hyperactivated upon a learning stimulus compared with wild-type (WT) mice. A number of other learning-associated genes were also significantly dysregulated in the Kdm5b Δ ARID/ Δ ARID hippocampus. Next, we knocked down Kdm5b specifically in the adult, WT mouse hippocampus with shRNA. Kdm5b knockdown resulted in spontaneous seizures, hyperactivity, and hippocampus-dependent long-term memory and long-term potentiation deficits. These findings identify KDM5B as a critical regulator of gene expression and synaptic plasticity in the adult hippocampus and suggest that at least some of the cognitive phenotypes associated with KDM5B gene variants are caused by direct effects on memory consolidation mechanisms.


Subject(s)
Hippocampus , Intellectual Disability , Jumonji Domain-Containing Histone Demethylases , Memory Consolidation , Memory, Long-Term , Animals , Hippocampus/metabolism , Mice , Male , Female , Intellectual Disability/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Memory Consolidation/physiology , Memory, Long-Term/physiology , Long-Term Potentiation/genetics , Long-Term Potentiation/physiology , Mice, Inbred C57BL , DNA-Binding Proteins
9.
J Exp Psychol Gen ; 153(5): 1336-1360, 2024 May.
Article in English | MEDLINE | ID: mdl-38451698

ABSTRACT

The relation between an individual's memory accuracy and reported confidence in their memories can indicate self-awareness of memory strengths and weaknesses. We provide a lifespan perspective on this confidence-accuracy relation, based on two previously published experiments with 320 participants, including children aged 6-13, young adults aged 18-27, and older adults aged 65-77, across tests of working memory (WM) and long-term memory (LTM). Participants studied visual items in arrays of varying set sizes and completed item recognition tests featuring 6-point confidence ratings either immediately after studying each array (WM tests) or following a long period of study events (LTM tests). Confidence-accuracy characteristic analyses showed that accuracy improved with increasing confidence for all age groups and in both WM and LTM tests. These findings reflect a universal ability across the lifespan to use awareness of the strengths and limitations of one's memories to adjust reported confidence. Despite this age invariance in the confidence-accuracy relation, however, young children were more prone to high-confidence memory errors than other groups in tests of WM, whereas older adults were more susceptible to high-confidence false alarms in tests of LTM. Thus, although participants of all ages can assess when their memories are weaker or stronger, individuals with generally weaker memories are less adept at this confidence-accuracy calibration. Findings also speak to potential different sources of high-confidence memory errors for young children and older adults, relative to young adults. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Memory, Long-Term , Memory, Short-Term , Humans , Memory, Short-Term/physiology , Adult , Female , Male , Adolescent , Aged , Young Adult , Memory, Long-Term/physiology , Child , Memory, Episodic
10.
Cell Rep ; 43(3): 113943, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38483907

ABSTRACT

The maturation of engrams from recent to remote time points involves the recruitment of CA1 neurons projecting to the anterior cingulate cortex (CA1→ACC). Modifications of G-protein-coupled receptor pathways in CA1 astrocytes affect recent and remote recall in seemingly contradictory ways. To address this inconsistency, we manipulated these pathways in astrocytes during memory acquisition and tagged c-Fos-positive engram cells and CA1→ACC cells during recent and remote recall. The behavioral results were coupled with changes in the recruitment of CA1→ACC projection cells to the engram: Gq pathway activation in astrocytes caused enhancement of recent recall alone and was accompanied by earlier recruitment of CA1→ACC projecting cells to the engram. In contrast, Gi pathway activation in astrocytes resulted in the impairment of only remote recall, and CA1→ACC projecting cells were not recruited during remote memory. Finally, we provide a simple working model, hypothesizing that Gq and Gi pathway activation affect memory differently, by modulating the same mechanism: CA1→ACC projection.


Subject(s)
Astrocytes , Memory, Long-Term , Memory, Long-Term/physiology , Memory/physiology , Mental Recall/physiology , Neurons/physiology , Gyrus Cinguli/physiology , Hippocampus/physiology
11.
Exp Brain Res ; 242(4): 901-912, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453752

ABSTRACT

A sedentary lifestyle, inadequate diet, and obesity are substantial risk factors for Type 2 diabetes mellitus (T2DM) development. A major picture of T2DM is insulin resistance (IR), which causes many impairments in brain physiology, such as increased proinflammatory state and decreased brain-derived neurotrophic factor (BDNF) concentration, hence reducing cognitive function. Physical exercise is a non-pharmacological tool for managing T2DM/IR and its complications. Thus, this study investigated the effects of IR induction and the acute effects of resistance exercise (RE) on memory, neurotrophic, and inflammatory responses in the hippocampus and prefrontal cortex of insulin-resistant rats. IR was induced by a high-fat diet and fructose-rich beverage. Insulin-resistant rats performed acute resistance exercise (IR.RE; vertical ladder climb at 50-100% of the maximum load) or rest (IR.REST; 20 min). Cognitive parameters were assessed by novel object recognition (NOR) tasks, and biochemical analyses were performed to assess BDNF concentrations and inflammatory profile in the hippocampus and prefrontal cortex. Insulin-resistant rats had 20% worse long-term memory (LTM) (p < 0.01) and lower BDNF concentration in the hippocampus (-14.6%; p < 0.05) when compared to non-insulin-resistant rats (CON). An acute bout of RE restored LTM (-9.7% pre vs. post; p > 0.05) and increased BDNF concentration in the hippocampus (9.1%; p < 0.05) of insulin-resistant rats compared to REST. Thus, an acute bout of RE can attenuate the adverse effects of IR on memory and neurotrophic factors in rats, representing a therapeutic tool to alleviate the IR impact on the brain.


Subject(s)
Brain-Derived Neurotrophic Factor , Diabetes Mellitus, Type 2 , Memory, Long-Term , Resistance Training , Animals , Humans , Rats , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Insulin , Memory, Long-Term/physiology
12.
Nature ; 627(8003): 374-381, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38326616

ABSTRACT

Memory encodes past experiences, thereby enabling future plans. The basolateral amygdala is a centre of salience networks that underlie emotional experiences and thus has a key role in long-term fear memory formation1. Here we used spatial and single-cell transcriptomics to illuminate the cellular and molecular architecture of the role of the basolateral amygdala in long-term memory. We identified transcriptional signatures in subpopulations of neurons and astrocytes that were memory-specific and persisted for weeks. These transcriptional signatures implicate neuropeptide and BDNF signalling, MAPK and CREB activation, ubiquitination pathways, and synaptic connectivity as key components of long-term memory. Notably, upon long-term memory formation, a neuronal subpopulation defined by increased Penk and decreased Tac expression constituted the most prominent component of the memory engram of the basolateral amygdala. These transcriptional changes were observed both with single-cell RNA sequencing and with single-molecule spatial transcriptomics in intact slices, thereby providing a rich spatial map of a memory engram. The spatial data enabled us to determine that this neuronal subpopulation interacts with adjacent astrocytes, and functional experiments show that neurons require interactions with astrocytes to encode long-term memory.


Subject(s)
Astrocytes , Cell Communication , Gene Expression Profiling , Memory, Long-Term , Neurons , Astrocytes/cytology , Astrocytes/metabolism , Astrocytes/physiology , Basolateral Nuclear Complex/cytology , Basolateral Nuclear Complex/metabolism , Basolateral Nuclear Complex/physiology , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Memory, Long-Term/physiology , Mitogen-Activated Protein Kinases/metabolism , Neurons/cytology , Neurons/metabolism , Neurons/physiology , Sequence Analysis, RNA , Single Molecule Imaging , Single-Cell Gene Expression Analysis , Ubiquitination
13.
Neuroscience ; 540: 87-102, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38220126

ABSTRACT

While the majority of the population is ever exposed to a traumatic event during their lifetime, only a fraction develops posttraumatic stress disorder (PTSD). Disrupted trauma memory processing has been proposed as a core factor underlying PTSD symptomatology. We used transgenic Targeted-Recombination-in-Active-Populations (TRAP) mice to investigate potential alterations in trauma-related hippocampal memory engrams associated with the development of PTSD-like symptomatology. Mice were exposed to a stress-enhanced fear learning paradigm, in which prior exposure to a stressor affects the learning of a subsequent fearful event (contextual fear conditioning using foot shocks), during which neuronal activity was labeled. One week later, mice were behaviorally phenotyped to identify mice resilient and susceptible to developing PTSD-like symptomatology. Three weeks post-learning, mice were re-exposed to the conditioning context to induce remote fear memory recall, and associated hippocampal neuronal activity was assessed. While no differences in the size of the hippocampal neuronal ensemble activated during fear learning were observed between groups, susceptible mice displayed a smaller ensemble activated upon remote fear memory recall in the ventral CA1, higher regional hippocampal parvalbuminneuronal density and a relatively lower activity of parvalbumininterneurons upon recall. Investigation of potential epigenetic regulators of the engram revealed rather generic (rather than engram-specific) differences between groups, with susceptible mice displaying lower hippocampal histone deacetylase 2 expression, and higher methylation and hydroxymethylation levels. These finding implicate variation in epigenetic regulation within the hippocampus, as well as reduced regional hippocampal activity during remote fear memory recall in interindividual differences in susceptibility to traumatic stress.


Subject(s)
Epigenesis, Genetic , Stress Disorders, Post-Traumatic , Mice , Animals , Memory/physiology , Hippocampus/metabolism , Memory, Long-Term/physiology , Mental Recall , Disease Susceptibility/metabolism , Stress Disorders, Post-Traumatic/metabolism
14.
Behav Brain Res ; 461: 114847, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38185383

ABSTRACT

The storage of long-term memories is a dynamic process. Reminder cues can destabilize previously consolidated memories, rendering them labile and modifiable. However, memories that are strongly encoded or relatively remote at the time of reactivation can resist destabilization only being rendered labile under conditions that favour memory updating. Using the object location recognition task, here we show in male C57BL/6 mice that novelty-induced destabilization of strongly-encoded memories requires muscarinic acetylcholine receptor (mAChR) activation. Furthermore, we use the objects-in-updated locations task to show that updating of object location memories is mAChR-dependent. Thus, mAChR stimulation appears to be critical for spatial memory destabilization and related memory updating. Enhancing our understanding of the role of ACh in memory updating should inform future research into the underlying causes of behavioural disorders that are characterized by persistent maladaptive memories, such as age-related cognitive inflexibility and post-traumatic stress disorder.


Subject(s)
Memory, Long-Term , Receptors, Muscarinic , Mice , Male , Animals , Mice, Inbred C57BL , Memory, Long-Term/physiology , Spatial Memory/physiology , Cues
15.
IEEE Trans Biomed Circuits Syst ; 18(2): 308-321, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37831580

ABSTRACT

Memory is vital and indispensable for organisms and brain-inspired intelligence to gain complete sensation and cognition of the environment. In this work, a memristive bionic memory circuit inspired by human memory model is proposed, which includes 1) receptor and sensory neuron (SN), 2) short-term memory (STM) module, and 3) long-term memory (LTM) module. By leveraging the in-memory computing characteristic of memristors, various functions such as sensation, learning, forgetting, recall, consolidation, reconsolidation, retrieval, and reset are realized. Besides, a multisensory mutual associative learning network is constructed with several bionic memory units to memorize and associate sensory information of different modalities bidirectionally. Except for association establishment, enhancement, and extinction, we also mimicked multisensory integration to manifest the synthetic process of information from different sensory channels. According to the simulation results in PSPICE, the proposed circuit performs high robustness, low area overhead, and low power consumption. Combining associative memory with human memory model, this work provides a possible idea for further research in associative learning networks.


Subject(s)
Bionics , Memory , Humans , Memory/physiology , Learning/physiology , Memory, Long-Term/physiology , Brain/physiology
16.
Proc Natl Acad Sci U S A ; 120(49): e2308671120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38015848

ABSTRACT

Activation of neuronal protein synthesis upon learning is critical for the formation of long-term memory. Here, we report that learning in the contextual fear conditioning paradigm engenders a decrease in eIF2α (eukaryotic translation initiation factor 2) phosphorylation in astrocytes in the hippocampal CA1 region, which promotes protein synthesis. Genetic reduction of eIF2α phosphorylation in hippocampal astrocytes enhanced contextual and spatial memory and lowered the threshold for the induction of long-lasting plasticity by modulating synaptic transmission. Thus, learning-induced dephosphorylation of eIF2α in astrocytes bolsters hippocampal synaptic plasticity and consolidation of long-term memories.


Subject(s)
Astrocytes , Long-Term Potentiation , Long-Term Potentiation/physiology , Neuronal Plasticity/genetics , Hippocampus/physiology , Protein Biosynthesis , CA1 Region, Hippocampal , Memory, Long-Term/physiology
17.
J Neurosci ; 43(50): 8744-8755, 2023 12 13.
Article in English | MEDLINE | ID: mdl-37857485

ABSTRACT

Mammalian target of rapamycin (mTOR) pathway has emerged as a key molecular mechanism underlying memory processes. Although mTOR inhibition is known to block memory processes, it remains elusive whether and how an enhancement of mTOR signaling may improve memory processes. Here we found in male mice that the administration of VO-OHpic, an inhibitor of the phosphatase and tensin homolog (PTEN) that negatively modulates AKT-mTOR pathway, enhanced auditory fear memory for days and weeks, while it left short-term memory unchanged. Memory enhancement was associated with a long-lasting increase in immature-type dendritic spines of pyramidal neurons into the auditory cortex. The persistence of spine remodeling over time arose by the interplay between PTEN inhibition and memory processes, as VO-OHpic induced only a transient immature spine growth in the somatosensory cortex, a region not involved in long-term auditory memory. Both the potentiation of fear memories and increase in immature spines were hampered by rapamycin, a selective inhibitor of mTORC1. These data revealed that memory can be potentiated over time by the administration of a selective PTEN inhibitor. In addition to disclosing new information on the cellular mechanisms underlying long-term memory maintenance, our study provides new insights on the molecular processes that aid enhancing memories over time.SIGNIFICANCE STATEMENT The neuronal mechanisms that may help improve the maintenance of long-term memories are still elusive. The inhibition of mammalian-target of rapamycin (mTOR) signaling shows that this pathway plays a crucial role in synaptic plasticity and memory formation. However, whether its activation may strengthen long-term memory storage is unclear. We assessed the consequences of positive modulation of AKT-mTOR pathway obtained by VO-OHpic administration, a phosphatase and tensin homolog inhibitor, on memory retention and underlying synaptic modifications. We found that mTOR activation greatly enhanced memory maintenance for weeks by producing a long-lasting increase of immature-type dendritic spines in pyramidal neurons of the auditory cortex. These results offer new insights on the cellular and molecular mechanisms that can aid enhancing memories over time.


Subject(s)
Auditory Cortex , Proto-Oncogene Proteins c-akt , Male , Mice , Animals , Mechanistic Target of Rapamycin Complex 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Auditory Cortex/metabolism , Dendritic Spines/metabolism , Tensins/metabolism , Memory, Long-Term/physiology , TOR Serine-Threonine Kinases/metabolism , Memory, Short-Term/physiology , Sirolimus/pharmacology , Fear/physiology , Phosphoric Monoester Hydrolases/metabolism , Mammals
18.
Learn Mem ; 30(10): 260-270, 2023 10.
Article in English | MEDLINE | ID: mdl-37802547

ABSTRACT

To date, there is insufficient evidence to explain the role of adenosinergic receptors in the reconsolidation of long-term spatial memory. In this work, the role of the adenosinergic receptor family (A1, A2A, A2B, and A3) in this process has been elucidated. It was demonstrated that when infused bilaterally into the hippocampal CA1 region immediately after an early nonreinforced test session performed 24 h posttraining in the Morris water maze task, adenosine can cause anterograde amnesia for recent and late long-term spatial memory. This effect on spatial memory reconsolidation was blocked by A1 or A3 receptor antagonists and mimicked by A1 plus A3 receptor agonists, showing that this effect occurs through A1 and A3 receptors simultaneously. The A3 receptor alone participates only in the reconsolidation of late long-term spatial memory. When the memory to be reconsolidated was delayed (reactivation 5 d posttraining), the amnesic effect of adenosine became transient and did not occur in a test performed 5 d after the reactivation of the mnemonic trace. Finally, it has been shown that the amnesic effect of adenosine on spatial memory reconsolidation depends on the occurrence of protein degradation and that the amnesic effect of inhibition of protein synthesis on spatial memory reconsolidation is dependent on the activation of A3 receptors.


Subject(s)
Hippocampus , Memory, Long-Term , Rats , Male , Animals , Hippocampus/physiology , Memory, Long-Term/physiology , Memory/physiology , CA1 Region, Hippocampal , Adenosine/metabolism , Adenosine/pharmacology
19.
Proc Natl Acad Sci U S A ; 120(40): e2300595120, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37748056

ABSTRACT

Transforming growth factor ß (TGFß) is required for long-term memory (LTM) for sensitization in Aplysia. When LTM is induced using a two-trial training protocol, TGFß inhibition only blocks LTM when administrated at the second, not the first trial. Here, we show that TGFß acts as a "repetition detector" during the induction of two-trial LTM. Secretion of the biologically inert TGFß proligand must coincide with its proteolytic activation by the Bone morphogenetic protein-1 (BMP-1/Tolloid) metalloprotease, which occurs specifically during trial two of our two-trial training paradigm. This paradigm establishes long-term synaptic facilitation (LTF), the cellular correlate of LTM. BMP-1 application paired with a single serotonin (5HT) pulse induced LTF, whereas neither a single 5HT pulse nor BMP-1 alone effectively did so. On the other hand, inhibition of endogenous BMP-1 activity blocked the induction of two-trial LTF. These results suggest a unique role for TGFß in the interaction of repeated trials: during learning, repeated stimuli engage separate steps of the TGFß cascade that together are necessary for the induction of long-lasting memories.


Subject(s)
Long-Term Potentiation , Transforming Growth Factor beta , Animals , Long-Term Potentiation/physiology , Transforming Growth Factor beta/pharmacology , Neuronal Plasticity/physiology , Memory, Long-Term/physiology , Aplysia/physiology
20.
Curr Biol ; 33(18): 3942-3950.e3, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37586373

ABSTRACT

Remote memories play an important role in how we perceive the world, and they are rooted throughout the brain in "engrams": ensembles of cells that are formed during acquisition. Upon their reactivation, a specific memory can be recalled.1,2,3,4,5,6,7,8,9,10,11,12 Many studies have focused on the ensembles in CA1 of the hippocampus and the anterior cingulate cortex (ACC). However, the evolution of these components during systems' consolidation has not yet been comprehensively addressed.13,14,15,16 By applying transgenic approaches for ensemble identification, CLARITY, retro-AAV, and pseudo-rabies virus for circuit mapping, and chemogenetics for functional interrogation, we addressed the dynamics of recent and remote CA1 ensembles. We expected both stability (as they represent the same memory) and maturation (over time). Indeed, we found that CA1 engrams remain stable between recent and remote recalls, and the inhibition of engrams for recent recall during remote recall functionally impairs memory. We also found that new cells in the remote recall engram in the CA1 are not added randomly during maturation but differ according to their connections. First, we show in two ways that the anterograde CA1 → ACC engram cell projection grows larger. Finally, in the retrograde projections, the ACC reduces input to CA1 engram cells, whereas input from the entorhinal cortex and paraventricular nucleus of the thalamus increases. Our results shine fresh light on systems' consolidation by providing a deeper understanding of engram stability and maturation in the transition from recent to remote memory.


Subject(s)
Hippocampus , Memory, Long-Term , Hippocampus/physiology , Memory, Long-Term/physiology , Mental Recall/physiology , Entorhinal Cortex , Gyrus Cinguli/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...